Search results for "Cell cycle"
showing 10 items of 804 documents
Persistent inflammation alters the function of the endogenous brain stem cell compartment
2008
Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain inflammation, induced by immune cells targeting myelin, extensively alters the proliferative and migratory properties of subventricular zone (SVZ)-resident NPCs in vivo leading to significant accumulation…
Centrosome amplification induced by hydroxyurea leads to aneuploidy in pRB deficient human and mouse fibroblasts.
2006
Alterations in the number and/or morphology of centrosomes are frequently observed in human tumours. However, it is still debated if a direct link between supernumerary centrosomes and tumorigenesis exists and if centrosome amplification could directly cause aneuploidy. Here, we report that hydroxyurea treatment induced centrosome amplification in both human fibroblasts expressing the HPV16 -E6-E7 oncoproteins, which act principally by targeting p53 and pRB, respectively, and in conditional pRB deficient mouse fibroblasts. Following hydroxyurea removal both normal and p53 deficient human fibroblasts arrested. On the contrary pRB deficient fibroblasts entered the cell cycle generating aneupl…
Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception
2016
Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …
In silico characterization of LZTS3, a potential tumor suppressor
2005
Members of the leucine zipper tumor suppressor (LZTS) protein family are thought to play roles in cell growth modulation. The two currently known members were identified by analyzing genomic and chromosomal alterations reported to be either involved or deleted in various types of cancer, suggesting a causative relationship. By means of computational biology, we have now identified a novel member of the LZTS protein family named LZTS3. The corresponding gene was localized to chromosome 20p13 and consisted of three exons. The novel LZTS3 protein demonstrated a high similarity to LAPSER1/LZTS2 and FEZ1/LZTS1, two members of the LZTS family. The conserved FEZ1 domain contains a leucine zipper m…
Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts
2021
Abstract Background Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alstrom syndrome (AS), they are known as the ‘obesity ciliopathies’ due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliop…
Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow
2014
How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell…
On Cancer Cell Cycle and Universal Apoptosis Parameters Signaling Unravelled In Silico
2010
Here, cell cycle in higher eukaryotes and their molecular networks signals both in G1/S and G2/M transitions are in silico replicated. Systems control theory is employed to design multi-nestled digital layers to simulate protein-to- protein activation and inhibition in the cancer cell cycle dynamics in presence of damaged genome. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage; p21mRNA/cyclin-CDK complex; CDK/CDC25/wee1/SKP2/APC/CKI and apoptosis target genes system) paved the way for unravelling the participants and their by-products having the task to execute (or not) cell death. The results of the proposed cell digital multi-layers…
Survivin’s Dual Role: An Export’s View
2007
Survivin is proposed to function as a mitotic regulator and an apoptosis inhibitor during development and pathogenesis. As such, survivin has aroused keen interest in disparate areas of basic and translational research. Survivin acts as a subunit of the chromosomal passenger complex (CPC), composed of the mitotic kinase Aurora-B, Borealin and INCENP, and is essential for proper chromosome segregation and cytokinesis. Our recent findings indicate that the nuclear export receptor Crm1 is critically involved in tethering the CPC to the centromere by interacting with a leucine-rich nuclear export signal (NES), evolutionary conserved in all mammalian survivin proteins. In addition, the survivin/…
Usher syndrome: molecular links of pathogenesis, proteins and pathways.
2006
Contains fulltext : 50437.pdf (Publisher’s version ) (Closed access) Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in…
The effect of 3-aminobenzamide, inhibitor of poly(ADP-ribose) polymerase, on human osteosarcoma cells
2003
This study demonstrates that in human osteosarcoma cells treatment with 3-aminobenzamide (3-AB), a potent inhibitor of poly(ADP-ribose) polymerase (PARP), induces morphological and biochemical features of differentiation, the duration of which depends on whether or not the normal RB gene is expressed. In Saos-2 cells expressing a non-functional Rb protein, 3-AB treatment induced the formation of transient, short dendritic-like protrusions. In RB-transfected-Saos-2 cells (a clone previously generated in our laboratory that shows stable expression of wild-type Rb protein), 3-AB induced marked and prolonged changes with the formation of long dendritic-like protrusions and the appearance of ste…